Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation

نویسندگان

  • Muhammad Ramzan
  • Muhammad Bilal
چکیده

The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Brownian motion and Thermophoresis on MHD Mixed Convection Stagnation-point Flow of a Nanofluid Toward a Stretching Vertical Sheet in Porous Medium

This article deals with the study of the two-dimensional mixed convection magnetohydrodynamic (MHD) boundary layer of stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis in the presence of thermal radiation. The skin-friction coefficient, Nusselt number an...

متن کامل

The Influence of Thermal Radiation on ‎Mixed Convection MHD Flow of a Casson ‎Nanofluid over an Exponentially Stretching ‎Sheet

   The present article describes the effects of thermal radiation and heat source/sink parameters on the mixed convective magnetohydrodynamic flow of a Casson nanofluid with zero normal flux of nanoparticles over an exponentially stretching sheet along with convective boundary condition. The governing nonlinear system of partial differential equations along with boundary conditions...

متن کامل

Unsteady convective flow for MHD powell-eyring fluid over inclined permeable surface

The current article has investigated unsteady convective flow for MHD non-Newtonian Powell-Eyring fluid embedded porous medium over inclined permeable stretching sheet. We have pondered the thermophoresis parameter, chemical reaction, variable thermal conductivity, Brownian motion, variable heat source and variable thermal radiation in temperature and concentration profiles. Using similar trans...

متن کامل

MHD Boundary Layer Flow of a Nanofluid over an Exponentially Permeable Stretching Sheet with radiation and heat Source/Sink

The problem of steady Magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. The effect of transverse Brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. The governing partial differential eq...

متن کامل

Effects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime

An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015